翻訳と辞書
Words near each other
・ Multitree
・ Multitronic
・ Multituberculata
・ Multitubulatina
・ Multitude
・ Multitude Media
・ Multitudes
・ Multiunit auction
・ Multiuse Model View
・ Multiuser detection
・ Multiuser DOS
・ Multiuser DOS Federation
・ Multiusos Ciudad de Cáceres
・ Multivac
・ MultiValue
Multivalued dependency
・ Multivalued function
・ Multivalvulida
・ Multivariable calculus
・ Multivariate
・ Multivariate adaptive regression splines
・ Multivariate analysis
・ Multivariate analysis of variance
・ Multivariate Behavioral Research
・ Multivariate Behrens–Fisher problem
・ Multivariate cryptography
・ Multivariate ENSO index
・ Multivariate gamma function
・ Multivariate interpolation
・ Multivariate kernel density estimation


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Multivalued dependency : ウィキペディア英語版
Multivalued dependency

In database theory, a multivalued dependency is a full constraint between two sets of attributes in a relation.
In contrast to the functional dependency, the multivalued dependency requires that certain tuples be present in a relation. Therefore, a multivalued dependency is a special case of ''tuple-generating dependency''. The multivalued dependency plays a role in the 4NF database normalization.
A multivalued dependency is a special case of a join dependency, with only two sets of values involved, i.e. it is a 2-ary join dependency.
== Formal definition ==
The formal definition is given as follows.


Let R be a relational schema and let \alpha \subseteq R and \beta \subseteq R (subsets). The multivalued dependency
\alpha \twoheadrightarrow \beta
(which can be read as \alpha multidetermines \beta ) holds on R if, in any legal relation r(R), for all pairs of tuples t _1 and t _2 in r such that t _1()=t _2(), there exist tuples t _3 and t _4 in r such that

t _1() = t _2 () = t _3 () = t _4 ()
t _3() = t _1 ()
t _3(- \beta ) = t _2 (- \beta )
t _4() = t _2 ()
t _4(- \beta ) = t _1 (- \beta )

In more simple words the above condition can be expressed as follows: if we denote by (x,y,z) the tuple having values for \alpha, \beta, R - \alpha - \beta collectively equal to x, y, z, correspondingly, then whenever the tuples (a,b,c) and (a,d,e) exist in r, the tuples (a,b,e) and (a,d,c) should also exist in r.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Multivalued dependency」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.